翻訳と辞書
Words near each other
・ Siege of Érsekújvár (1663)
・ Siege of Érsekújvár (1685)
・ Siege of Đông Quan
・ Siege of Ōta Castle
・ Siege of Ōtate
・ Siege of Ōtsu
・ Siege Perilous
・ Siege Perilous (Andromeda)
・ Siege Perilous (disambiguation)
・ Siege Perilous (Once Upon a Time)
・ Siege running
・ Siege tower
・ Siegel
・ Siegel + Gale
・ Siegel Center
Siegel disc
・ Siegel domain
・ Siegel Eisenstein series
・ Siegel G-function
・ Siegel High School
・ Siegel identity
・ Siegel modular form
・ Siegel operator
・ Siegel parabolic subgroup
・ Siegel Stores Corporation
・ Siegel Suites
・ Siegel theta series
・ Siegel upper half-space
・ Siegel zero
・ Siegel's lemma


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Siegel disc : ウィキペディア英語版
Siegel disc
Siegel disc is a connected component in the Fatou set where the dynamics is analytically conjugated to an irrational rotation.
==Description==
Given a holomorphic endomorphism f:S\to S on a Riemann surface S we consider the dynamical system generated by the iterates of f denoted by f^n=f\circ\stackrel\circ f. We then call the orbit \mathcal^+(z_0) of z_0 as the set of forward iterates of z_0. We are interested in the asymptotic behavior of the orbits in S (which will usually be \mathbb, the complex plane or \mathbb=\mathbb\cup\, the Riemann sphere), and we call S the phase plane or ''dynamical plane''.
One possible asymptotic behavior for a point z_0 is to be a fixed point, or in general a ''periodic point''. In this last case f^p(z_0)=z_0 where p is the period and p=1 means z_0 is a fixed point. We can then define the ''multiplier'' of the orbit as \rho=(f^p)'(z_0) and this enables us to classify periodic orbits as ''attracting'' if |\rho|<1 ''superattracting'' if |\rho|=0), ''repelling'' if |\rho|>1 and indifferent if \rho=1. Indifferent periodic orbits split in ''rationally indifferent'' and ''irrationally indifferent'', depending on whether \rho^n=1 for some n\in\mathbb or \rho^n\neq1 for all n\in\mathbb, respectively.
Siegel discs are one of the possible cases of connected components in the Fatou set (the complementary set of the Julia set), according to Classification of Fatou components, and can occur around irrationally indifferent periodic points. The Fatou set is, roughly, the set of points where the iterates behave similarly to their neighbours (they form a normal family). Siegel discs correspond to points where the dynamics of f is analytically
conjugated to an irrational rotation of the complex disc.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Siegel disc」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.